
Chapter 6

Relational Database

6.1 Introduction

You can now purchase a music player that stores nearly 10,000 songs. The
storage medium is a tiny hard disk, a marvel of hardware engineering. Equally
impressive is the software which combines many aspects of compression, error
correction and detection, and database manipulation.

First, the compression algorithm manages to store around 300 music CDs,
each with around 600MB of storage, on my 20GB player; this is a compression
of about 10 to 1. While it is possible to compress music to any extent, because
exact reproduction is not expected, you would not want to listen to such music.
Try listening to a particularly delicate piece over the telephone! The compression
algorithm manages to reproduce music reasonably faithfully.

A music player begins its life expecting harsh treatment, even torture. The
devices are routinely dropped, they are subjected to X-ray scans at airports,
and left outside in very cold or very hot cars. Yet, the hardware is reasonably
resilient, but more impressively, the software works around the hardware glitches
using error-correcting strategies some of which we have outlined in an earlier
chapter.

The question that concerns us in this chapter is how to organize a large
number of songs so that we can locate a set of songs quickly. The songs are
first stored on a desktop (being imported from a CD or over the internet from
a music store); they can be organized there and then downloaded to a player.
A naive organization will make it quite frustrating to find that exact song in
your player. And, you may wish to listen to all songs which are either by artist
A or composer B, in the classical genre, and have not been played more than 6
times in the last 3 months. The subject matter of this chapter is organization
of certain kinds of data, like songs, to allow efficient selection of a subset which
meets a given search criterion.

For many database applications a set of tuples, called a table, is often the
appropriate data structure. Let me illustrate it with a small database of movies;

179



180 CHAPTER 6. RELATIONAL DATABASE

Title Actor Director Genre Year
Jurassic Park Jeff Goldblum Steven Spielberg Action 1993
Jurassic Park Sam Neill Steven Spielberg Action 1993
Men in Black Tommy Lee Jones Barry Sonnenfeld SciFi 1997
Men in Black Will Smith Barry Sonnenfeld SciFi 1997
Independence Day Will Smith Roland Emmerich SciFi 1996
Independence Day Bill Pullman Roland Emmerich SciFi 1996
My Fair Lady Audrey Hepburn George Cukor Classics 1964
My Fair Lady Rex Harrison George Cukor Classics 1964
The Sound of Music Julie Andrews Robert Wise Classics 1965
The Sound of Music Christopher Plummer Robert Wise Classics 1965
Bad Boys II Martin Lawrence Michael Bay Action 2003
Bad Boys II Will Smith Michael Bay Action 2003
Ghostbusters Bill Murray Ivan Reitman Comedy 1984
Ghostbusters Dan Aykroyd Ivan Reitman Comedy 1984
Tootsie Dustin Hoffman Sydney Pollack Comedy 1982
Tootsie Jessica Lange Sydney Pollack Comedy 1982

Table 6.1: A list of movies arranged in a table

Title Actor Director Genre Year
Men in Black Will Smith Barry Sonnenfeld SciFi 1997
Independence Day Will Smith Roland Emmerich SciFi 1996

Table 6.2: Result of selection on Table 6.1 (page 180)

see Table 6.1 (page 180). We store the following information for each movie: its
title, actor, director, genre and the year of release. We list only the two most
prominent actors for a movie, and they have to appear in different tuples; so
each movie is being represented by two tuples in the table. We can now easily
specify a search criterion such as, find all movies released between 1980 and
2003 in which Will Smith was an actor and the genre is SciFi. The result of this
search is a table, shown in Table 6.2 (page 180).

Chapter Outline We introduce the table data structure and some terminol-
ogy in section 6.2. A table resembles a mathematical relation, though there
are some significant differences which we outline in that section. An algbra of
relations is developed in section 6.3. The algebra consists of a set of operations
on relations (section 6.3.1) and a set of identities over relational expressions
(section 6.3.2). The identities are used to process queries efficiently, as shown
in section 6.3.3. A standard query language, SQL, is described in section 6.3.4.
This chapter is a very short introduction to the topic; for more thorough treat-
ment see the relevant chapters in [35] and [2].



6.2. THE RELATIONAL DATA MODEL 181

6.2 The Relational Data Model

Central to the relational data model is the concept of relation. You are familiar
with relations from algebra, which I briefly review below. Next, I will explain
relations in databases, which are slightly different.

6.2.1 Relations in Mathematics

The > operator over positive integers is a (binary) relation. We write 5 > 3,
using the relation as an infix operator. More formally, the relation > is a set of
pairs:

{(2, 1), (3, 1), (3, 2), · · ·}

A general relation consists of tuples, not necessarily pairs as for binary re-
lations. Consider a family relation which consists of triples (c, f, m), where c is
the name of a child, and f and m are the father and the mother. Or, the relation
Pythagoras which consists of triples (x, y, z) where the components are positive
integers and x2 + y2 = z2. Or, Fermat which consists of quadruples of positive
integers (x, y, z, n), where xn + yn = zn and n > 2. (A recent breakthrough
in mathematics has established that Fermat = φ.) In databases, the relations
need not be binary; in fact, most often, they are not binary.

A relation, being a set, has all the set operations defined on it. We list some
of the set operations below which are used in relational algebra.

1. Union: R ∪ S = {x| x ∈ R ∨ x ∈ S}

2. Intersection: R ∩ S = {x| x ∈ R ∧ x ∈ S}

3. Difference: R − S = {x| x ∈ R ∧ x 6∈ S}

4. Cartesian Product: R × S = {(x, y)| x ∈ R ∧ y ∈ S}

Thus, given R = {(1, 2), (2, 3), (3, 4)} and S = {(2, 3), (3, 4), (4, 5)}, we get

R ∪ S = {(1, 2), (2, 3), (3, 4), (4, 5)}
R ∩ S = {(2, 3), (3, 4)}
R − S = {(1, 2)}
R × S = {((1, 2), (2, 3)), ((1, 2), (3, 4)), ((1, 2), (4, 5)),

((2, 3), (2, 3)), ((2, 3), (3, 4)), ((2, 3), (4, 5)),
((3, 4), (2, 3)), ((3, 4), (3, 4)), ((3, 4), (4, 5))}

In algebra, you have seen reflexive, symmetric, asymmetric and transitive
binary relations. None of these concepts is of any use in relational algebra.



182 CHAPTER 6. RELATIONAL DATABASE

Year Genre Title Director Actor
1997 SciFi Men in Black Barry Sonnenfeld Will Smith
1996 SciFi Independence Day Roland Emmerich Will Smith

Table 6.3: A column permutation of Table 6.2 (page 180)

Theatre Address
General Cinema 2901 S 360
Tinseltown USA 5501 S I.H. 35
Dobie Theater 2021 Guadalupe St
Entertainment Film 6700 Middle Fiskville Rd

Table 6.4: Theatres and their addresses

6.2.2 Relations in Databases

Database relations are inspired by mathematical relations. A database relation
is best represented by a matrix, called a table, in which (1) each row is a tuple
and (2) each column has a name, which is an attribute of the relation. Table 6.1
(page 180) shows such a relation; it has 5 attributes: Title, Actor, Director,
Genre, Year. There are 16 rows, each is a tuple of the relation.

In both mathematical and database relations, the tuples are distinct and
they may appear in any order. The type of an attribute, i.e., the type of values
that may appear in that column, is called the domain of the attribute. The
name of a database relation along with the names and domains of attributes is
called a relational schema. A schema is a template; an instance of the schema
has a number of tuples which fit the template.

The most fundamental difference between mathematical and database re-
lations is that in the latter the columns can be permuted arbitrarily keeping
the same relation. Thus, Table 6.2 (page 180) and Table 6.3 (page 182) repre-
sent the same relation. Therefore, we have the identity (we explain R × S, the
cartesian product of database relations R and S, in section 6.3.1).

R × S = S × R

For mathematical relations, this identity does not hold because the components
cannot be permuted.

A relational database is a set of relations with distinct relation names. The
relations in Tables 6.1 (page 180), 6.4 (page 182), and 6.5 (page 183) make up
a relational database. Typically, every relation in a database has a common
attribute with some other relation.



6.3. RELATIONAL ALGEBRA 183

Theatre Title Time Rating
General Cinema Jurassic Park Sat, 9PM G
General Cinema Men in Black Sat, 9PM PG
General Cinema Men in Black Sun, 3PM PG
Tinseltown USA Independence Day Sat, 9PM PG-13
Dobie Theater My Fair Lady Sun, 3PM G
Entertainment Film Ghostbusters Sun, 3PM PG-13

Table 6.5: Theatres, Movies, Time and Rating

6.3 Relational Algebra

An algebra consists of (1) elements, (2) operations and (3) identities. For exam-
ple, to do basic arithmetic over integers we define: (1) elements to be integers,
(2) operations to be +, −, ×, ÷, and (3) identities such as,

x + y = y + x
x × (y + z) = x × y + x × z

where x, y and z range over the elements (i.e., integers).
We define an algebra of database relations in this section. The elements are

database relations. We define a number of operations on them in section 6.3.1
and several identities in section 6.3.2.

6.3.1 Operations on Database Relations

Henceforth, R, S and T denote relations, and a and b are sets of attributes.
Relations R and S are union-compatible, or just compatible, if they have the
same set of attributes.

Union R ∪ S is the union of compatible relations R and S. Relation R ∪ S
includes all tuples from R and S with duplicates removed.

Intersection R∩S is the intersection of compatible relations R and S. Rela-
tion R ∩ S includes all tuples which occur in both R and S.

Difference R−S is the set difference of compatible relations R and S. Relation
R − S includes all tuples which are in R and not in S.

Cartesian Product or Cross Product R × S is the cross product of rela-
tions R and S. The relations need not be compatible. Assume for the moment
that the attributes of R and S are disjoint. The set of attributes of R × S are
the ones from both R and S. Each tuple of R is concatenated with each tuple
of S to form tuples of R × S. Two database relations are shown in Table 6.6



184 CHAPTER 6. RELATIONAL DATABASE

Title Actor Director Year
Jurassic Park Sam Neill Steven Spielberg 1993
Men in Black Tommy Lee Jones Michael Bay 2003

Ivan Reitman 1984

Table 6.6: Two relations separated by vertical line

Title Actor Director Year
Jurassic Park Sam Neill Steven Spielberg 1993
Jurassic Park Sam Neill Michael Bay 2003
Jurassic Park Sam Neill Ivan Reitman 1984
Men in Black Tommy Lee Jones Steven Spielberg 1993
Men in Black Tommy Lee Jones Michael Bay 2003
Men in Black Tommy Lee Jones Ivan Reitman 1984

Table 6.7: Cross Product of the two relations in Table 6.6 (page 184)

(page 184); they are separated by a vertical line. Their cross product is shown
in Table 6.7 (page 184).

The cross product in Table 6.7 makes no sense. We introduce the join
operator later in this section which takes a more “intelligent” cross product.

If R and S have common attribute names, the names are changed so that
we have disjoint attributes. One strategy is to prefix the attribute name by the
name of the relation. So, if you are computing Prof × Student where both Prof
and Student have an attribute id, an automatic renaming may create Profid and
Studentid . This does not always work, for instance, in Prof × Prof . Manual
aid is then needed. In this chapter, we write R × S only if the attributes of R
and S are disjoint.

Note a subtle difference between mathematical and database relations for
cross product. For tuple (r, s) in R and (u, v) in S, their mathematical cross
product gives a tuple of tuples, ((r, s), (u, v)), whereas the database cross prod-
uct gives a tuple containing all 4 elements, (r, s, u, v).

The number of tuples in R×S is the number of tuples in R times the number
in S. Thus, if R and S have 1,000 tuples each, R × S has a million tuples and
R × (S × S) has a billion. So, cross product is rarely computed in full. It is
often used in conjunction with other operations which can be applied in a clever
sequence to eliminate explicit computations required for a cross product.

Projection The operations we have described so far affect only the rows (tu-
ples) of a table. The next operation, projection, specifies a set of attributes of
a relation that are to be retained to form a relation. Projection removes all
other attributes (columns), and removes any duplicate rows that are created as
a result. We write πu,v (R) to denote the relation which results by retaining
only the attributes u and v of R. Let R be the relation shown in Table 6.1



6.3. RELATIONAL ALGEBRA 185

(page 180). Then, πTitle,Director ,Genre,Year(R) gives Table 6.9 (page 186) and
πTitle,Actor (R) gives Table 6.10 (page 186).

Selection The selection operation chooses the tuples of a relation that sat-
isfy a specified predicate. A predicate uses attribute names as variables, as
in year ≥ 1980 ∧ year ≤ 2003 ∧ actor = “Will Smith′′ ∧ genre =
“SciF i′′. A tuple satisfies a predicate if the predicate is true when the at-
tribute names are replaced by the corresponding values from the tuple. We
write σp(R) to denote the relation consisting of the subset of tuples of R that
satisfy predicate p. Let R be the relation in Table 6.1 (page 180). Then,
σyear≥1980∧year≤2003∧actor=“Will Smith′′∧genre=“SciFi′′(R) is shown in Table 6.2
(page 180) and σactor=“Will Smith′′∧genre=“Comedy′′(R) is the empty relation.

Join There are several join operators in relational algebra. We study only one
which is called natural join, though we simply call it join in this chapter. The
join of R and S is written as R ⊲⊳ S. Here, R and S need not be compatible;
typically, they will have some common attributes.

The join is a more refined way of taking the cross product. As in the cross
product, take each tuple r of R and s of S. If r and s have no common attributes,
or do not match in their common attributes, then their join produces an empty
tuple. Otherwise, concatenate r and s keeping only one set of values for the
common attributes (which match). Consider Tables 6.4 (page 182) and 6.5
(page 183). Their join is shown in Table 6.8 (page 185). And, the join of
Tables 6.9 (page 186) and 6.10 (page 186) is Table 6.1 (page 180).

Theatre Title Time Rating Address
General Cinema Jurassic Park Sat, 9PM G 2901 S 360
General Cinema Men in Black Sat, 9PM PG 2901 S 360
General Cinema Men in Black Sun, 3PM PG 2901 S 360
Tinseltown USA Independence Day Sat, 9PM PG-13 5501 S I.H. 35
Dobie Theater My Fair Lady Sun, 3PM G 2021 Guadalupe St
Entertainment Film Ghostbusters Sun, 3PM PG-13 6700 Middle Fiskville

Table 6.8: Join of Tables 6.4 and 6.5

If R and S have no common attributes, we see that R ⊲⊳ S is an empty
relation, though it has all the attributes of R and S. We will avoid taking
R ⊲⊳ S if R and S have no common attributes.

Writing attr(R) for the set of attributes of R, we have

attr(R ⊲⊳ S) = attr(R) ∪ attr(S), and
x ∈ R ⊲⊳ S ≡ (attr(R) ∩ attr(S) 6= φ) ∧ πattr(R)(x ) ∈ R ∧ πattr(S)(x ) ∈ S

The condition attr(R)∩ attr(S) 6= φ, i.e., R and S have a common attribute, is
essential. Without this condition, R ⊲⊳ S would be R× S in case the attributes
are disjoint.



186 CHAPTER 6. RELATIONAL DATABASE

Title Director Genre Year
Jurassic Park Steven Spielberg Action 1993
Men in Black Barry Sonnenfeld SciFi 1997
Independence Day Roland Emmerich SciFi 1996
My Fair Lady George Cukor Classics 1964
The Sound of Music Robert Wise Classics 1965
Bad Boys II Michael Bay Action 2003
Ghostbusters Ivan Reitman Comedy 1984
Tootsie Sydney Pollack Comedy 1982

Table 6.9: Compact representation of a portion of Table 6.1 (page 180)

The join operator selects only the tuples which match in certain attributes;
so, join results in a much smaller table than the cross product. Additionally,
the result is usually more meaningful. In many cases, a large table can be
decomposed into two much smaller tables whose join recreates the original table.
See the relations in Tables 6.9 (page 186) and 6.10 (page 186) whose join gives
us the relation in Table 6.1. The storage required for these two relations is much
smaller than that for Table 6.1 (page 180).

Title Actor
Jurassic Park Jeff Goldblum
Jurassic Park Sam Neill
Men in Black Tommy Lee Jones
Men in Black Will Smith
Independence Day Will Smith
Independence Day Bill Pullman
My Fair Lady Audrey Hepburn
My Fair Lady Rex Harrison
The Sound of Music Julie Andrews
The Sound of Music Christopher Plummer
Bad Boys II Martin Lawrence
Bad Boys II Will Smith
Ghostbusters Bill Murray
Ghostbusters Dan Aykroyd
Tootsie Dustin Hoffman
Tootsie Jessica Lange

Table 6.10: Table 6.1 (page 180) arranged by Title and Actor

Exercise 80

Suppose R and S are compatible. Show that R ⊲⊳ S = R ∩ S.



6.3. RELATIONAL ALGEBRA 187

6.3.2 Identities of Relational Algebra

We develop a number of identities in this section. I don’t prove the identities;
I recommend that you do. These identities are used to transform a relational
expression into an equivalent form whose evaluation is more efficient, a proce-
dure known as query optimization. Query optimization can reduce evaluation
time of relational expressions by several orders of magnitude. In the following,
R , S and T denote relations, a and b are sets of attributes, and p and q are
predicates.

1. (Selection splitting) σp∧q (R) = σp(σq (R))

2. (Commutativity of selection)

σp(σq (R)) = σq (σp(R))

This is a corollary of Selection splitting given above.

3. (Projection refinement) Let a and b be subsets of attributes of relation R,
and a ⊆ b. Then,

πa (R) = πa (πb(R))

4. (Commutativity of selection and projection) Given that p names only
attributes in a,

πa (σp(R)) = σp(πa (R))

5. (Commutativity and Associativity of union, cross product, join)

R ∪ S = S ∪ R
(R ∪ S) ∪ T = R ∪ (S ∪ T )
R × S = S × R
(R × S) × T = R × (S × T )
R ⊲⊳ S = S ⊲⊳ R
(R ⊲⊳ S) ⊲⊳ T = R ⊲⊳ (S ⊲⊳ T ),

provided R and S have common attributes and so do S and T , and
no attribute is common to all three relations.

6. (Selection pushing)

σp(R ∪ S) = σp(R) ∪ σp(S )
σp(R ∩ S) = σp(R) ∩ σp(S )
σp(R − S) = σp(R) − σp(S )

Suppose predicate p names only attributes of R. Then,



188 CHAPTER 6. RELATIONAL DATABASE

σp(R × S ) = σp(R) × S
σp(R ⊲⊳ S ) = σp(R) ⊲⊳ S

7. (Projection pushing)

πa (R ∪ S ) = πa (R) ∪ πa (S )

8. (Distributivity of projection over join)

πa (R ⊲⊳ S ) = πa (πb(R) ⊲⊳ πc(S ))

where R and S have common attributes d, a is a subset of attributes of
both R and S, b is a’s subset from R plus d and c is a’s subset from S
plus d. That is,

a ⊆ attr(R) ∪ attr(S)
b = (a ∩ attr(R)) ∪ d
c = (a ∩ attr(S)) ∪ d
d = attr(R) ∩ attr(S) ✷

Selection splitting law says that evaluations of σp∧q (R) and σp(σq (R)) are
interchangeable; so, apply either of the following procedures: look at each tuple
of R and decide if it satisfies p∧ q, or first identify the tuples of R which satisfy
q and from those identify the ones which satisfy p. The benefit of one strategy
over another depends on the relative costs of access times to the tuples and
predicate evaluation times. For large databases, which are stored in secondary
storage, access time is the major cost. Then it is preferable to evaluate σp∧q (R).

It is a good heuristic to apply projection and selection to as small a rela-
tion as possible. Therefore, it is almost always better to evaluate σp(R) ⊲⊳ S
instead of σp(R ⊲⊳ S ), i.e., apply selection to R which tends to be smaller than
R ⊲⊳ S. Similarly, distributivity of projection over join is often used in query
optimizations.

Exercise 81

Suppose predicate p names only the attributes of S. Show that σp(R ⊲⊳ S) =
R ⊲⊳ σp(S ).

Exercise 82

Show that πa(R ∩ S) = πa(R) ∩ πa(S ) does not necessarily hold.

6.3.3 Example of Query Optimization

We consider the relations in Tables 6.1 (page 180), 6.5 (page 183), and 6.4
(page 182). We call these relations R, S and T , respectively. Relation R is
prepared by some movie distribution agency independent of the theatres; theatre
owners in Austin compile the databases S and T . Note that T is relatively stable.



6.3. RELATIONAL ALGEBRA 189

We would like to know the answer to: What are the addresses of theatres
where Will Smith is playing on Saturday at 9PM. We write a relational expres-
sion for this query and then transform it in several stages to a form which can
be efficiently evaluated. Let predicates

p be Actor = Will Smith
q be T ime = Sat, 9PM

The query has the form πAddress(σp∧q (x )), where x is a relation yet to be
defined. Since x has to include information about Actor, T ime and Address,
we take x to be R ⊲⊳ S ⊲⊳ T . Relation x includes many more attributes than
the ones we desire; we will project away the unneeded attributes. The selection
operation extracts the tuples which satisfy the predicate p ∧ q, and then the
projection operation simply lists the addresses. So, the entire query is

πAddress(σp∧q 〈R ⊲⊳ S ⊲⊳ T 〉)

Above and in the following expressions, we use brackets of different shapes to
help readibility.

We transform this relational expression.

πAddress(σp∧q 〈R ⊲⊳ S ⊲⊳ T 〉)
≡ {Associativity of join; note that the required conditions are met}

πAddress(σp∧q 〈(R ⊲⊳ S ) ⊲⊳ T 〉)
≡ {Selection pushing over join}

πAddress(σp∧q 〈R ⊲⊳ S 〉 ⊲⊳ T )
≡ {See lemma below. p names only the attributes of R and q of S}

πAddress(〈σp(R) ⊲⊳ σq (S )〉 ⊲⊳ T )
≡ {Distributivity of projection over join; d = {Theatre}}

πAddress(πTheatre〈σp(R) ⊲⊳ σq (S )〉 ⊲⊳ πAddress,Theatre(T ))
≡ {πAddress,Theatre(T ) = T }

πAddress(πTheatre〈σp(R) ⊲⊳ σq (S )〉 ⊲⊳ T )
≡ {Distributivity of projection over join;

the common attribute of σp(R) and σq(S ) is T itle}
πAddress(〈πTitle(σp(R)) ⊲⊳ πTheatre,Title(σq (S ))〉 ⊲⊳ T )

Lemma Suppose predicate p names only the attributes of R and q of S. Then,

σp∧q(R ⊲⊳ S ) = σp(R) ⊲⊳ σq(S )

Proof:

σp∧q (R ⊲⊳ S )
≡ {Selection splitting}

σp〈σq (R ⊲⊳ S )〉
≡ {Commutativity of join}

σp〈σq (S ⊲⊳ R)〉
≡ {Selection pushing over join}



190 CHAPTER 6. RELATIONAL DATABASE

σp〈σq(S ) ⊲⊳ R〉
≡ {Commutativity of join}

σp〈R ⊲⊳ σq(S )〉
≡ {Selection pushing over join}

σp(R) ⊲⊳ σq(S )

Compare the original query πAddress(σp∧q〈R ⊲⊳ S ⊲⊳ T 〉) with the transformed
query πAddress(〈πTitle(σp(R)) ⊲⊳ πTheatre,Title(σq(S ))〉 ⊲⊳ T ) in terms of the ef-
ficiency of evaluation. The original query would first compute R ⊲⊳ S ⊲⊳ T , a
very expensive operation involving three tables. Then selection operation will
go over all the tuples again, and the projection incurs a small cost. In the
transformed expression, selections are applied as soon as possible, in σp(R) and
σq(S ). This results in much smaller relations, 3 tuples in σp(R) and 3 in σq(S ).
Next, projections will reduce the number of columns in both relations, though
not the number of rows. The join of the resulting relation is much more efficient,
being applied over smaller tables. Finally, the join with T and projection over
Address is, again, over smaller tables.

6.3.4 Additional Operations on Relations

The operations on relations that have appeared so far are meant to move the
data around from one relation to another. There is no way to compute with the
data. For example, we cannot ask: How many movies has Will Smith acted in
since 1996. To answer such questions we have to count (or add), and none of the
operations allow that. We describe two classes of operations, Aggregation and
Grouping, to do such processing. Aggregation operations combine the values in
a column in a variety of ways. Grouping creates a number of subrelations from a
relation based on some specified attribute values, applies a specified aggregation
operation on each, and stores the result in a relation.

Aggregation The following aggregation functions are standard; all except
Count apply to numbers. For attribute t of a relation,

Count: the number of distinct values (in t)
Sum: sum
Avg: average
Min : minimum
Max: maximum

We write Af t, g u, h v···(R) where f , g and h are aggregation functions
(shown above) and t, u and v are attribute names in R. The result is a relation
which has just one tuple, with values obtained by applying f , g and h to the
values of attributes t, u and v of R, respectively. The number of columns in the
result is the number of attributes chosen.



6.3. RELATIONAL ALGEBRA 191

Student Id Dept Q1 Q2 Q3
216285932 CS 61 72 49
228544932 CS 35 47 56
859454261 CS 72 68 75
378246719 EE 70 30 69
719644435 EE 60 70 75
549876321 Bus 56 60 52

Table 6.11: Relation Grades

Avg Q1
59

Table 6.12: Relation Grades, Table 6.11, averaged on Q1

Example of Aggregation Consider the Grades relation in Table 6.11 (page 191).
Now AAvg Q1(Grades) creates Table 6.12 (page 191).
We create Table 6.13 (page 191) by AMin Q1, Min Q2, Min Q3(Grades).

Min Q1 Min Q2 Min Q3
35 30 49

Table 6.13: Min of each quiz from relation Grades, Table 6.11

Consider the names of the attributes in the result Table 6.13, created by
AMin Q1, Min Q2, Min Q3(Grades). We have simply concatenated the name of
the aggregation function and the attribute in forming those names. In general,
the user specifies what names to assign to each resulting attribute; we do not
develop the notation for such specification here.

Grouping A grouping operation has the form gAL(R) where g is a group
(see below) and AL(R) is the aggregation (L is a list of function, attribute pairs
and R is a relation). Whereas AL(R) creates a single tuple, gAL(R) typically
creates multiple tuples. The parameter g is a set of attributes of R. First, R is
divided into subrelations R0, R1 · · ·, based on the attributes g; tuples in each Ri

have the same values for g and tuples from different Ris have different values.
Then aggregation is applied to each subrelation Ri. The resulting relation has
one tuple for each Ri.

Example of Grades, contd. Compute the average score in each quiz for each
department. We write DeptAAvg Q1, Avg Q2, Avg Q3(Grades) to get Table 6.14
(page 192). Count the number of students in each department whose total score
exceeds 170: DeptACount, Student Id〈σQ1+Q2+Q3>170 (Grades)〉.



192 CHAPTER 6. RELATIONAL DATABASE

Dept Avg Q1 Avg Q2 Avg Q3
CS 56 62 60
EE 65 50 72
Bus 56 60 52

Table 6.14: Avg of each quiz by department from relation Grades, Table 6.11

Query Language SQL A standard in the database community, SQL is a
widely used language for data definition and manipulation. SQL statements
can appear as part of a C++ program, and, also they can be executed from a
command line. A popular version is marketed as MySQL.

Query facility of SQL is based on relational algebra (most SQL queries can
be expressed as relational expressions). But, SQL also provides facilities to
insert, delete and update items in a database.


